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Abstract The dissipative properties of the Vlasov equation are investigated for a model system 
of A fermions in a harmonic oscillator plus a two-body intenction. The dissipation is quantified 
in terms of relaxation rates towards the find equilibrium which is B B o l t m m  distribution in 
phase space. We look particularly for the dependence on the initial state and on the strength of 
the two-body interaction, 

1. Introduction 

Hamiltonian dynamics with a large number of degrees of freedom is a basic problem in many 
areas of physics. Rapidly growing computing power now permits large-scale simulations 
which allow deeper insight into the dynamical features of many-body systems [I]. One 
of the first investigations of this kind was the test of the ergodic hypothesis in the, famous 
numerical experiment by Fermi er d [2]. They used a simplified Hamiltonian to allow a 
thorough computation of the full dynamics. The study of realistic systems, in particular, 
quantum or semi-classical systems, on the other hand, still requires some reduction in the 
description of the problem. 

The lowest, and first, level of description is usually given by the Vlasov equation which 
constitutes the (semi-)classical mean-field description for the dynamics of the one-body 
distribution function. The Vlasov equation is widely used in various fields of physics such as 
,mvitation [3], plasmas [4]. semiconductors [5]. and more recently nuclear physics [6]. The 
next higher level of description accounts for intermediate two-body collisions thus adding 
a collision term to the Vlasov equation. This leads to the Vlasov-Boltzmann equation 
for classical systems, such as, for example, a classical plasma [4]. Quantum systems of 
fermions require the Vlasov-Uehling-Uhlenbeck (vuu) equation whose collision term takes 
into account the Pauli blocking after the collision [6]. 

In three-dimensional problems, the Vlasov equation is commonly solved numerically 
by the so-called test-particle method. The idea of this method is to represent the one- 
body distribution function by a swarm of N numerical particles, the test particles, evolving 
in phase space. It can be shown that this evolution can be reformulated as an N-body 
Hamiltonian dynamics, which depends on the original physical A-body Hamiltonian and of 
the numerical parameters of the test-particle representation [7]. 

It has been pointed out in a previous publication that the actual solution of the Vlasov 
equation with the test-particle method displays dissipative features converging eventually to 

0305-4470/95/040787+17$l9,50 @ 1995 IOP Publishing Ltd 787 



788 P L‘Eplattenier et a1 

a stable equilibrium state which is given by the classical Boltzmann equilibrium distribution 
[7]. This causes problems for dense systems of fermions because the Boltwnann distribution 
can violate the Pauli principle allowing more than one identical fermion in one phase-space 
cell. One usually hopes to cure this problem by adding the Uehling-Uhlenbeck collision 
term which, as such, drives convergence towards a Fermi distribution. But it has been found 
in [7] that the drive towards a Boltmann equilibrium, coming from the Vlasov equation, is 
competitive in strength such that the final vuu state is a mix between Fermi and Boltzmann 
equilibrium which violates the Pauli principle. 

The purpose of this paper is to continue and to complement the previous investigations 
of [7]. We want to study now, in detail, the dependence of the dissipation on the initial state 
and on the strength of the residual two-body interaction, the model studied here allows us 
to tune the amount of nonlinearity through the self-consistent field, which was not possible 
in [7]. We thus consider a simple test case consisting of A fermions in an external oscillator 
potential and coupled via a purely two-body interaction. This model has several advantages 
for the present purposes. First, the predominance of the external field allows a systematic 
variation of the initial state without having the danger of a sudden and dramatic change 
of its internal smcture. In other words, such a model allows a systematic check of the 
quality of the numerical initial condition, namely its closeness to the actual Thomas-Fermi 
ground state. Second, there is one,, pure two-body interaction (and no further, involved 
density dependence) which represents a clean and well controllable source for the residual 
interaction. And third, the simplicity makes the test case sufficiently general to be applicable 
to various fields of physics. We cite possible applications to nuclear and atomic physics but 
one could equally consider electronic transport in semiconductors or plasma physics. 

The paper is organized as follows. In section 2, we briefly summarize some formal 
aspects of the Vlasov equation, the test-particle method, and the observables under 
consideration. And in section 3, we present and discuss the results. 

2. Theoretical framework 

2.1. The Vlasov equation and beyond 

We consider a system of A interacting particles which is described by the A-body 
Hamiltonian 

A 

H = ($P? + Uext(Ti))  + V ( r ;  - Tj) . ( 1 )  
i=l icj 

The particles move in an external one-body field U,,, and interact via the two-body potential 
V .  The coordinates T and momenta p are three-dimensional vectors. 

This paper concentrates on the widely used approximate treatment of the A-body 
dynamics in terms of the Vlasov equation 

(2) 
a f  
a t  
- + If, h ( f ,  V)l  = O  

with the self-consistent one-body (or mean-field) Hamilton operator 

(3) 
h ( f , V )  = - + U ~ ~ ; ( r ) + S d 3 r i V ( r , r ’ ) S d 3 p  P2 f ( r ’ , p ) .  

2m - 
P W  

This is a mean-field approach for A-body dynamics expressed in terms of f ( r , p ) ,  a 
hypothetical smooth one-body distribution in phase space, r = (7, p ) .  The Vlasov equation 
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emerges as the lowest-order approach of many-body hierarchies from different points of 
view. 

For classical systems, the derivation starts from the Liouville equation in A-body phase 
space which is then recast into the BBGKY hierarchy of equations of motion for m-body 
subdensities [SI. Truncating the hierarchy at the lowest order, i.e. at the level of one- 
body densities, then yields the Vlasov equation (2). The next order correction can be 
constructed by considering the intermediate two-body collisions perturbatively. This extends 
the equation of motion to 

a f  
at 

ZB = a  dpzdp3d~4I~I~~(E)S~)lf(r,~3)f(r,p4) - f(r,pdf(r,p?)l (5) 

(4) - + If, h1 = xB(f, v )  

s 
where 01 is a constant and ZB the Boltzmann collision term, S(E) expresses, energy 
conservation, and S(p) momentum conservation over the collision. The collision te& 
introduces dissipation into the dynamics such that the Vlasov-Boltzmann equations (4) and 
(5) drives the system towards a unique and stable equilibrium state which is described by 
the Boltzmann distribution 

fB a e-hlkT. (6) 
Note that the determination of the equilibrium state constitutes a self-consistent, problem 
because h = h(fs, VU). 

There is a very subtle problem involved in this derivation of the Vlasov(-Boltzmann) 
equation from the classical EBGKY hierarchy. The actual phase-space distribution of asystem 
of A point particles is highly structured consisting out of sums of S6(r - ri) distributions. 
This is not what the BBKGY hierarchy and the Vlasov equation are designed for. They imply 
a continuum limit where the particles are supposed to be sampled in cells in phase space 
and the phasespace distribution f stands for the smooth changes from one cell to another. 
There is a coarse-graining mechanism involved in between the original A-body problem 
and the final Vlasov(-BohmaM) equation. 

For quantum systems, one starts from the quantum many-body hierarchy and deduces as 
the lowest order a quantum mean-field dynamics, the time-dependent Hartree-Fock (TDHF) 
theory for the evolution of the one-body density operator 6 [9]. A phasespace representation 
of TDHF is achieved employing the Wigner tr+sform [IO] 

for any one-body operator A. 
reads [l I] 

The TDHF equation in the Wigner representation then 

where pw(r, p) is the phase-space representation of the one-body density 6 and hw the 
Wigner transformed mean-field Hamiltonian. A semiclassical expansion of that (equation 
amounts to a Taylor expansion of the sine function in orders of E. The Vlasov equation (2)  
then emerges as the lowest order of the expansion, i.e. in the classical limit f i  + 0. Again 
one can derive the next order correction from a perturbative treatment of the intermediate 
two-body collisons. This yields the Vlasov-Uehling-Uhlenbeck (vuu) equation 

(9) af - +U, hl  =ZJu(f ,  VIZ). 
at 
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The Zuu is the Uehling-Uhlenbeck collision term which is similar to the Boltzmann collision 
term (5) but with the blocking factors f3f4(1- f i ) ( l - fz ) - ( l - f3) (1- f4) f , f~  toaccount 
for the Pauli principle amongst fermions. Consequently, the Uehling-Uhlenbeck collision 
term ZUU drives towards a Fermi distribution 

as the equilibrium stage, provided the Vlasov part of the vuu equation is indifferent to what 
the final equilibrium is. It is interesting to note that the fermionic nature of the particles 
shines through in the classical limit at the level of the collision term. The Pauli principle 
is a quantum effect which is not wiped out by the limit h -+ 0. This would require a 
different limit, namely the limit of low density in phase space (e.g. at high temperatures). 

Similarly to the classical derivation, there is a subtle problem with the supposed 
smoothness of the phase-space distribution f. The Wigner transformed quantum density 
pw oscillates wildly 1151. Again one has to employ the concept of coarse-graining in phase 
space, e.g. by a Gaussian folding. This leads naturally to the Husimi picture which has 
been shown to deliver a more stable classical limit [16]. We will not dwell further on that 
very intricate detail and postpone it to a forthcoming publication. 

There is a more practical problem with the vuu equation. Remember that the final 
Fermi equilibrum (IO) is achieved by ZJJ only if the Vlasov equation as such does not 
interfere. It is thus important to check the actual solution of the Vlasov dynamics for its 
own tendencies towards a final equilibrium stage. This has been done extensively in [7]. 
The result is that a test-particle solution of the Vlasov equation does indeed drive towards 
an equilibrium and this is the (classical) Boltzmann equilibrium (6), understandable because 
the Vlasov equation is a classical equation. This has the undesirable effect for long-time 
simulations with the vuu equation that the final equilibrium is an ill-defined mix between 
the Boltzmann and Fermi distribution, causing several side effects, such as the violation of 
the Pauli principle, or too high temperatures in the spectra of emitted particles. It is the 
aim of this paper to continue the investigation of the dissipative properties of the Vlasov 
equation with particular emphasis on the strength of the residual interaction and the initial 
excitation of the system. 

2.2. The test-particle method 

The standard way of simulating the Vlasov equation in high-dimensional problems is to 
use the test-particle method. The idea of the test-particle method is to project the one-body 
distribution function f onto a Swam of N numerical particles, which means to solve the 
Vlasov equation on a subspace of the one-body distribution functions space, on which f is 
approximated by 

where here we use Gaussian sampling 

This is supposed to mock up the assumed smoothness of the one-body distribution 
(section 2.1). The momentum sampling is unimportant for the Vlasov equation because 
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Ekin = pZ/2m commutes wikh the folding (except for a constant offset of zero-point energy). 
The sampling~in coordinate space is relevant for accumulating the local density 

Many solution techniques employ an interpolating grid in coordinate space. The most stable 
representation is achieved when the folding width U is related to the mesh size A of the 
coordinate-space grid by 

. 
A=-*. ’ (14) 

A distribution of point particles is recovered in the limit A + 0. The approximately 
smooth distribution (11) can be expressed through the point distribution through a folding 

A N  
f A , N  = g * f O , N  f 0 . N  = - c 8 3 ( G - T i ) 8 3 ( P - P i )  (15) 

N i = I  . 
where * stands for the folding operation. 

The dynamics of the phase-space distribution f is then reduced to the dynamics of the 
rest particles. Their equations of motion are obtained by minimizing an action oii the ri’s 
and the pi’s: 

S=Sdt[SdTdP-fA,N(T;p) PZ - ~ ~ d ~ d ~ d P ~ d ~ ’ ~ i z ( ~ - ~ ’ ) f n , ~ ( ~ , P ) f ~ . ~ ( ~ ‘ . ~ P ’ ) ]  
2m 

(16) 

Note that the folding g is used twice: first, when accumulating the density (13) to compute 
the self-consistent mean field, and second, when retriveing the force from the grid. Equations 
(17) actually appear as dynamical equations for N classical point particles corresponding 
to an effective N-body Hamiltonian 

(This Hamiltonian neglects the folding of Uext which is approximately valid for soft external 
potentials and even exact for harmonic potentials.) The equations of motion (17) are solved 
numerically with the well known leap-frog algorithm 1181. 

The dissipative features of the test-panicle dynamics can be estimated by again applying 
the BBGKY hierarchy to this effective N-body dynamics. This allows us to deduce that the 
test-particle method approximately corresponds to the dynamics [7] 

Veff = g *  v * g  . ( 1% 

This differs from the desired Vlasov equation (2) by the occurence of the Boltzmmn collision 
term, which is suppressed by the factor A/N, and by the fact that the effective interaction 
Vea is employed, which differs from V by a double folding. Thus two limiting processes are 
needed to recover the Vlasov dynamics: first, N/A + 00 to suppress the collision term; 
and second, A ~ +  0 to explore the true interaction, i.e. g* V * g  -+ V .  The behaviour in 
the limit N/A -+ 00 is well controlled. The other limit, A -+ 0, is more involved. The 
folding of V corresponds to a suppression of the high Fourier components in V .  A large 

a f  A 
at  - +W. Nf. Veff)I = zw, Veff )  
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A thus dramatically reduces the effective cross section in the collision term. Lowering A 
enhances the cross section and much larger N / A  are required to achieve sufficient reduction 
again. Thus the double limit is hard to establish in practice, in particular, if short-range 
interactions appear in the Hamiltonian [13]. 

It is then obvious from (19) that the test-particle method introduces artificial two-body 
dissipation which should scale as ( A I N ) ' .  One also experiences a certain amount of one- 
body dissipation due to the reduction of information by sampling the density and the force, 
related to the fact that any finite representation has only finite resolution. This aspect is 
better seen in a different way of rewriting the tat-particle dynamics. Inserting the equations 
of motion (17) for the test particles in the test-particle representation (1 1) for f and rewriting 
it in terms of Poisson brackets yields ~ A . N  + jAJ, h(fA.N, V * g)) = ~ O .  Extracting the 
mismatch j with the desired Vlasov equation yields 

fA.N + 1fA.N- h(fA,N, v ) ]  j j = 1fA.N- h(fA,N, v - v *$)I .  (20) 
Here we see a deviation j at the one-body level due to fact that the equation which is 
actually solved contains one more folding in the interaction. It is to be noted, however, that 
the pertubation j also embraces the two-body dissipation because the mismatch j could be 
used directly to generate a collision term. 

Last but not least, we have to remember that to evaluate any observable means to look at 
the system with reduced information. This means, for example, that the time evolution of a 
onebody observable shows additional one-body dissipation from reduced observation. This 
can even have dynamical consequences. For example, the Uehling-Uhlenbeck collision 
term in the vuu equation requires the measurement of the actual one-body phase-space 
distribution f. But this is sampled with a folding in phase space thus generating some 
one-body dissipation. In any case, we hesitate to disentangle further the dynamical and 
observational sources of one-body dissipation. It suffices to conclude that we have to 
expect both sorts of dissipation, two-body dissipation o( ( A / N ) '  and onebody dissipation 
o( ( A / N ) O ,  and that both have been indeed observed in practice [71. An example of such a 
mix for the average relaxation times is given in (36). 

2.3. The test case 

In this paper, we consider a well controllable test case consisting out of a harmonic external 
field plus pure two-body force 

(21) 3 U ext - I 2  - 5' V = c 8 ( r - r r )  m = l .  
The external potential establishes proper binding under all circumstances and the parameter 
c provides a clean measure of the residual interaction. The string constant of the external 
oscillator is set to 1 as well as the mass of the physical particles. This means that we are 
working in natural units where the energy scale is set by the oscillator frequency w and the 
length scale by the oscillator width G. We use these natural units because the present 
model can serve as a schematic model in various different areas of physics. One merely 
has to replace the natural units by the typical scales of the problem. 

For example, to view the results from a nuclear physics perspective. we introduce a 
mass mcz = 940 MeV for the nucleons and an oscillator frequency of w = 0.05 c fm-' 
equivalent to hw = 10 MeV. This yields the following scale factors: 

length: 5.8 fm 
time: 20 fm c-' 
energy: 10 MeV 
coupling c: 1.5 x lo4 MeV fm3. 
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A typical atomic system would employ the electron mass mc2 = 0.5 MeV and a frequency 
in the eV range which would lead to the following scale factors: 

length 2.8 K 
time: 0.6 x 10-l~ s 
energy: 1.0 eV 
coupling c: 1.5 x eV AS . 

Here we aim to investigate specifically the effects of varying initial conditions and 
varying strengths of residual interaction. We thus avoid variation of particle number and 
folding width, which have been discussed extensively before, and take a standard test case 
with 

A = 32 N = 2000 U = 0.087 (22) 
where the folding width is given in natural units. Occasionally .we will also vary the number 
of test particles, N / A ,  and it will be clearly indicated, but the two major quantities possibly 
varying will be the coupling strength c and the initial excitation energy. 

A first side result of our investigations can be quoted here already. The simple two- 
body force allows two different ways of sampling the forces on the test particles. First, the 
standard sampling via an interpolating grid in coordinate space. And second, a simulation 
with a direct two-body potential VEe: 

vea(T - rj )  = g * g * 8 = e-(+~i)P)* / ( 2 U % m 3  
can be used. The latter case hence reduces to a pure (classical) molecular dynamics approach 
with a two-body interaction. We have compared both ways for a variety of cases and found 
no visible difference in the results, provided the mesh size A and folding width U are 
related to each other according to (14). This confirms the validity of the technique using 
an interpolating coordinate space grid. It is to be noted that the interpolating grid becomes 
much more efficient at large N because it scales with N I ,  whereas the direct two-body 
interaction scales with N 2 .  

2.4. The initial condition 

We want to study systems of fermions. The semiclassical ground state is defined by the 
Thomas-Fermi distribution 

f = VFB(~F - h( f, V ) )  = UFB EF - C&(T) - d3r’ V p )  -- ”) (24) ./ ~, 2m 
P(T) 

(< 
where UF is the number of internal dexrees of freedom. For example, electrons have two 
spins yielding WF = 2, whereas nucleons have spin and isospin yielding VF = 4. Here 
we use WF = 2. The equation (24) is obviously a nonlinear equation for f to be solved 
iteratively. This iteration can be simplified by integrating out the momenta. This yields a 
simpler equation for the local density distribution 

where p depends on p( r )  as given in (24). This equation also needs to be solved iteratively 
for p ( r )  but only in three spatial dimensions. The full distribution is then constructed from 
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(24) using the p ( r )  obtained from solving (25). The distribution of the test particles is 
obtained by Monte Carlo sampling the coordinates ri according to the density p ( r )  and the 
momenta p; in a sphere of radius m. 

We also want to vary the internal excitation of the system with respect to the Thomas- 
Fermi ground state. This is done simply by a monopole scaling in momentum space 

pi + eSPi (26) 
where 6 is an appropriate scaling strength. As an alternative, we consider a quadrupole 
deformation in momentum space 

PYi + eSpyi py + e-”pzi . (27) S pxi + e pxi 

2.5. The observables 

We aim to study the relaxation of the one-body phase-space distribution towards an 
equilibrium. An equilibrium distribution is characterized by (f, h} = 0, and thus f = f (h) .  
We therefore look at the energy distribution D ( E )  which is obtained from sampling the 
single-particle energies si = p3/2m + Ui of the test particles in energy bins. But this 
energy distribution D(t) its such is not yet very instructive because it is weighted with the 
single-particle level density d(&)  in phase space which is defined by 

and computed by direct numerical integration on the three-dimensional coordinatespace 
grid. We can then deduce the desired energy occupation 

n ( ~ )  = D(E)/d(E).  (29) 
The questions are then whether the energy occupation relaxes towards an equilibrium, at 
which rate the relaxation takes place, and to which final distribution. The Boltzmann 
equilibrium (6) corresponds to 

(30) (e-Es)/kTs ne = e 
and the Fermi equilibrium (10) to 

In order to visualize the closeness to one of these two equilibria, we construct at any instant 
of time the energy-equivalent Boltzmann and Fermi distributions by adjusting &S/F and ‘T,,F 
to give the right number of particles and the right single-particle energy: 

(nB/F) = (n )  (&nB/F) = (8s) (32) 

(a) = E ( E ) ~ ( E )  d s .  (33) 

where 

s 
The energy occupation n(&) is already a quite useful way to deliver compressed 

information on the state of the system, particularly if compared with the Boltzmann and 
Fermi equivalent distributions nB/F. But it is desirable to have one single number to 
characterize the closeness to the Boltzmann or Fermi equilibrium. This is provided by 
the entropy of the energy distribution 

S = & d ( & ) n ( ~ ) l ~ g ( n ( & ) ) .  s (34) 
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This is then to be compared with the analogous entropy Se,, of the Boltzmann and Fermi 
equivalent distributions ng/F. The usual outcome is that the Vlasov propagation in the test- 
particle method approaches S +& Se [7] and we will confirm this for all cases considered 
here. 

Furthermore, we are interested in a quantitative measure of the relaxation. To this end 
we fit the time evolution of the entropy, S( t ) ,  to an exponential 

s = S, + a . (35) 
Those fits were achieved by a least-square method, giving a relaxation time t. The error 
bar on 5 is obtained by allowing variations of the xz in a range of 20%~above its minimal 
value. 

3. Results and discussion 

3.1. The initial condition 

One of the aims of this paper is to investigate the stability of the initial Thomas-Fermi 
condition in connection with the numerical propagation of the Vlasov equation. For this 
task, it is important that the initial state is prepared with high quality. We thus will first 
check the properties of the initial state in this subsection. The considerations employ the 
standard test case as given in (22) and the coupling strength c = 0.0035. The initial state 
starts from a solution of the Thomas-Fermi equation (24) on the coordinate-space grid. 
 this^ Thomas-Fermi ground state is then sampled with the test particles. It remains to be 
checked how well this sampling reproduces the ground state. Global properties, as energies 
and radii, are reproduced very well. This is demonstrated in table 1, where we compare the 
three parts of the total energy. 

Table 1. Comparison of the Thomas-Fermi ground state an the grid with the test-particle 
sampling for different wnuibutions to the energy. as indicated. 

EneMes 
~ 

Harmonic Kinetic Coupling 

On the grid 58.00 51.92 4.00 
Sampled 58.16 52.08 4.08 

A more detailed observable is the energy occupation n(c) ,  as defined in section 2.5. 
The initial n ( c )  computed from the test-particle ensemble is shown in figure 1. The result 
from the test-particle sampling with N = 2000 is a very good approximation to the constant 
value 1 inside the occupied states. The cut off at the Fermi energy QF looks a bit softer 
than the required ~ ( E F  - 6 ) .  But remember that the energy occupation is sampled in energy 
bins of 0.6 natural units. The width of the sampled n(6) is just somewhat larger than the 
distance of these bins. This means that we have reproduced the initial e(+ - Q )  within 
the resolution of our sampling. The initial state is a fermionic state by construction, and 
this feature is confirmed by comparison with the equivalent Fermi occupation nF: The 
corresponding Boltzmann occupation ng is obviously far away from this initial state. 

The initial local density p ( r )  is shown in figure 2. The result from the test-particle 
ensemble can be considered as a good approximation to the original density on the grid. 
(Remember that the density from the test-particle representation is sampled on radial bins 
of~0.08 natural units.) 
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Figure 1. Energy occupation n ( 4  of the initial Thomas-Fermi ground state in test-panicle 
representation (full curve). The equivalent Fermi (dotted) and Boltzmann occupations (broken) 
are shown for comparison. The minimum energy is above 0 due to the mean field from the 
repulsive interaction. 

3.5 

3 

2.5 m 
.4 .- 
$ 2  
n 

1 
Y 

0.5 

0 

I), -Te;;;;c,; , , 1, .-, , , ,I 
0 

Thomas-Fermi . 
I 1.5 O” Radius r 

Figure 2. Radial local density distribution p ( r )  weighted with rz  for the initid stnte From the 
test-psltcle representation (full curve) and from the Thom=Fermi solution on the grid. 

3.2. Analysis of the time evolution 

This section shows that the Vlasov dynamics drives a system away from the Fermi 
equilibrium towards a Boltzmann equilibrium [7]. The new aspect here is that we now 
start from the Thomas-Fermi ground state which is supposed to be a stationary state of the 
Vlasov equation. And yet the result is exactly the same as before: the system is unstable 
in the initial state, which obeys the Pauli principle, and relaxes towards a final Boltzmann 
equilibrium. Furthermore, this section serves to demonstrate the various ways of looking at 
this relaxation process for one typical example. 

We have seen in the previous subsection that the initial condition nicely establishes 
a Fermi distribution. But the Vlasov dynamics of the system quickly explores the 
fact that this distribution is not a stable equilibrium state. It drives the system away 
from the initial state and converges towards the stable equilibrium of a classical system 
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Figure 3. En& occupation n(6) for the standard test czse with c = 0.0035 at f = 150 
namral units. a late stage of the time evolution. The equivalent Fermi (dotted) and Boltzmann 
occupations (broken) are shown for comparison. 
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Fit 
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4 

Figure 4. The entropy S of the energy occupation (full curve) vmus time, compared with 
the Fermi and Bol~mann equivalent entropies SF (long broken) and Ss (shon broken), and, 
furthermore, compared with a relaxation ansatz (dotted) whose relaxation time is r = 12.43, 
which is to compare with the period of the external harmonic oscillator 7 = 6.28. 

which is the Boltzmann distribution. This is demonstrated in figure 3, where we show 
the energy occupation after propagating the initial state of the previous subsection for 
150 time units. It is~obvious that the distribution has moved far away from a Fermi 
distribution. It is very close to a Boltzmann distribution. The remaining deviations from the 
equivalent Boltzmann disnibution are due to dynamical fluctuations (effectively Langevin 
fluctuations). They change their shape quickly from one snapshoot to the next. But they 
never disappear. 

The full energy occupation n(6)  is quite instructive. But it is very cumbersome to trace 
changing pattern during time evolution. Therefore, the energy occupation is characterized 
by one number, the entropy S as defined in (34). Analogously, there are the entropies S,  
and SR of the equivalent Fermi and Boltzmann disbibutions. We show in figure 4 these 
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entropies as function of time for the standard test case of this and the previous section. One 
clearly sees the instability of the inita.1 Fermi equilibrium and the convergence towards a 
final Boltzmann distribution. The actual entropy S is bound to stay below SB at all times 
because it contains Langevin fluctuations and these fluctuations always act to lower the 
entropy [7]. 

The pattern of S(r) is already a quite compressed information on the dynamics. 
Nonetheless, it can become cumbersome to look at a large variety of these data if one 
wants to trace down trends. As seen in figure 4, one can characterize the S(t) very well by 
exponential relaxations (35). 

The value of the relaxation time obtained in this standard case is 5 x 12.4, which is 
about three times the period of the harmonic oscillator 5 = 2n/w = 6.28. This clearly 
shows the importance of the relaxation process studied in this paper, which takes place in 
a time-scale comparable to characteristic time-scales of the system. 

3.3. Variation of the initial energy 

We have seen in [7] that an excited system converges towards a Boltzmann equilibrium, 
and we have confirmed in the previous subsection that a system starting in a Thomas- 
Fermi ground state does the same. There remains the question of how the observed 
relaxation times depend on the internal excitation of the initial state. The simplicity of 
the one-body Hamiltonian chooseu here allows a clear investigation of close to ground 
state cases. One can hence study the stability at low excitation of the system. We show 
in figure 5 the relaxation rates for systematically varied excitation energies using the two 
different excitation mechanisms outlined in section 2.4. In this regime of small excitation, 
the scaling mainly enhances the initial value of the entropy (which provides an indicator 
of the closeness of the true ground state) but the relaxation process remains essentially 
independent of the excitation energy. The result is not surprising if we look at it from 
the appropriate reference point. The excitation energy in figure 5 was measured with 
respect to the Thomas-Fermi ground state, and thus the change from zero energy to any 

-Quadrupolar 
- -Monopolar 0.1 

. 

+ " 4 I '  " 8 " " 12 " ' * '  16 
Excitation energy 

Figure S. The average rrlaxation rate I/r  versus internal excitation energy (measured with 
respect to the Thomas-Fermi ground state) for various types of initial excitation: monopole 
scaling of momenta (full squares connected by a broken line) and quadrupole scaling of momenta 
(full circles connected by a full line). 
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excitation looks huge. The true equilibrium, however, is the classical Boltzmann equilibrium 
which is far below the Thomas-Fermi ground state and thus has a high temperature when 
starting from anything above this Thomas-Fermi 'sound state'. The variations relative 
to the Boltzmann equilibrium state are much smaller. The Boltzmann temperatures of ihe 
final states in figure 5 vary only between kT = 1.030 and 1.041, which is not such a 
dramatic variation. Thus the small changes in the observed relaxation are indeed very 
plausible. 

3.4. Variation of the coupling 

The present model (21) is designed to contain only one interaction which is a pure 
two-body force. This is then the unique and density-independent residual interaction 
which acts as the source for the observed dissipation. The confining oscillator potential 
provides a fairly constant spatial extension of the system such that we have a clean 
separation of the interaction effects parametrized through c, the strength of the two-body 
interaction. 

Figure 6 shows the entropies S(t)  for systematically varied coupling strength c. One 
sees nicely how the relaxation slows down with decreasing coupling c. The Langevin 
fluctuations are also related to the dissipation, i.e. they are large where the relaxation rate 
is high and vice versa. 

The corresponding average relaxation times and their uncertainties are shown in figure 7. 
This figure suggests that the relaxation rate depends linearly on c. There remains, 
however, a faint problem concerning the fact that the two-body interaction also modifies 
the one-body mean field through the self-consistent contribution c1d3r'S(r - T ' ) ~ ( T ' ) .  

In order to quantify this side-effect, we change the curvature of the external oscillator, 

cSd3r'S(r - T ' ) ~ ( T ' )  term) is kept constant. This readjustment is done for the curvature 
near T = 0. It turns out that this readjustment of the effective mean field is perfect 
in the region of interest where p ( r )  # 0: The results of this variant are also indicated 
with stars in figure 7 . ~  They coincide with the previous results which demonstrates 
that the relevant parameter governing the dissipation is c, the strength of the two-body 
interaction. 

Tr 1 2  + :a?, such that the total curvature of the effective mean field (including the 

1s . . ,  . . . . . . . . . . . . . . . . . . . . . . . . . .  
-c = 0.0003 - - -c = 0.0016 . . . . . c = 0.006 

- - c = o . d 0 0 8 - - - - - c =  0.0032----c=0.01 

v ,. 1 1 , . . . 1 1 1 , . . . . . 1 . 1 . , . 1 . . , . .  

0 50 Time 100 IS0 

Figure 6. The entropy S of the energy occupation versus time for various strengths of the 
coupling wnstant e as indicated (in NNrd units). 
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Figure 7. The average relaxarion rates l l r  versus coupling strength c (both in nahlral units). 
The error bars indicate the estimated uncertainty on l/r. The open triangles connected by the 
full line are results from the standard model. The crossed circles are results from a variant of 
the model where thecurvature of the extemal potential has been reajusted to minimize the effect 
of the self-consistent potential. 

3.5. Separation of one- and two-body dissipation 

The linear relation between l / r  and c, as observed in figure 7, seems at first glance natural. 
But at a second thought, one would rather have expected a dependence like c2 because 
the collisions count in that order. The point is that we have to distinguish between one- 
body and two-body dissipation. The two-body dissipation is related to collisions of the 
test particles. It can be described by a Boltzmann collision term which has a cross section 
U c( IV1zlZ a &A/N),  as can be deduced from (5)  and (19). The relaxation rate is then 
l / r  a U .  The onebody dissipation comes from the finite resolution and the finite sampling 
of the one-body density, and subsequently of the one-body potential. It is thus independent 
of the number of test particles, c( (A/N)',  and linear in c as the mean field cp. Therefore, 
it was suspected in [7] that both dependences should occur, yielding a mix 

of one-body dissipation (a c ! )  and two-body dissipation (a cz). The accuracy of our 
numerical treatment and the simple form of the residual interaction allows us to explore 
this distinction in more detail. The data in figure 7 suggest a predominance of one-body 
dissipation. This can be counterchecked by drawing the relaxation rate versus A / N ,  as 
is done for three values of c in figure 8. Remember that our standard test case used 
A / N  = 0.016. The offset at A/N -+ 0 displays the one-body dissipation term cx (A/") ' ,  
whereas the slope gives a hint on the two-body dissipation c( (AJN) ' .  Figure 8 shows 
clearly that onebody dissipation is dominant in the present model for the range of AJN 
which we have used. 

The curve in figure 8 corresponding tn c = 0.005 shows two regimes. This is explained 
by the fact that this case already has a large amount of self-consistent feedback. As a 
consequence it becomes not so easy to produce a high-quality initial condition any longer. 
Taking the initial entropy as a critical check, we see that the initial state already shows 
strong fluctuations deviating from a Fermi distribution large A/N, i.e. for a small number 
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Figure S. The average relaxation rates l lr  versus the inverse number of lesi particles AIN for 
three different coupling strengths c as indicated. 
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Figure. 9. The average relaxation mes l / r  versus coupling strength c (both in natural units) 
for three different external poteniinls: cx rZ ,  triangles connected by a long broken line; c( r4, 
square boxes connected by a short broken line; and cx rs ,  circles connected by a full line. 

of test particles. A particularly high resolution is required for the stronger coupling; in 
practice we need typically A/N < 0.0033. Thus, in ~lhe c = 0.005 curve for large A/N, 
the system starts from an initial condition which already deviates from a Fermi distribution, 
and then it misses the initial fast relaxation, leading to a longer average relaxation time. 
This interpretation is confirmed by the fact that for small A / N ,  where the initial entropy 
is properly set, one again recovers an almost constant dependance on AfN.  Altogether, 
the results of figure 8 taken at small A / N  are consistent with the linear trend with c 
observed in figure 7. A further countercheck would be to evaluate the trend of the, slopes in 
figure 8 relative to c2 in order to disentangle the contribution from the two-body dissipation. 
However, the data in this figure are not sufficient for a conclusive answer. 
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3.6. Other external potentials 

The test case of this paper employed the oscillator potential a r* as the external field. This 
is a very particular potential. We therefore want to countercheck the results for alternative 
external potentials. We choose the two further cases U a r4 and LI a r*, both adjusted 
such that the RMS radius of the system is comparable to the oscillator case. Of course, 
the system also converges in these alternative cases towards a Boltzmann distribution. The 
question is at which rate. The relaxation rates for various coupling strengths c are compared 
in figure 9 for the three external potentials. For the three cases, I/s roughly increases with 
the coupling constant c. The results differ in the details but the orders of magnitude of 
relaxation remain similar. From a qualitative point of view, it nevertheless does not seem 
that the detailed shape of the external potential has a critical influence on the dissipation. 
As expected, the dominant source of dissipation remains the residual two-body interaction. 

4. Conclusion 

We have investigated the dissipative ‘aspects of the Vlasov dynamics in the test-particle 
solution, i.e. the fact that the state of the system develops towards a final equilibrium 
state which consists of a Boltzmann distribution and some Langevin fluctuations about it. 
The state of the system is visualized in terms of the energy occupation n(E), the probability 
density with which a level at energy E is occupied. The energy occupation indicates visually 
the structure of the level, whether it resembles more a Fermi distribution or a Boltzmann 
dishibution. The typical shape of the energy distribution can be characterized by one 
number-the entropy in relation to the entropies of the equivalent Fermi and Boltzmann 
distributions. This allows us to draw conclusions on the relaxation times by watching the 
convergence of the entropy towards its equilibrium value in the course of the time evolution. 
Using these observables, we have particularly considered the effects of the initial state and 
of the residual interaction on the dissipation. 

We have prepared a fermionic ground state of the system from the solution of the 
Thomas-Fermi equation. This state is a stationary state of the Vlasov equation. But it turns 
out to be an unstable equilibrium, where any small fluctuation triggers a quick deviation 
from the ThomaoFermi state and steady relaxation towards the final Boltzmann equilibrium. 
We have varied the initial state by a systematic increase of excitation energy with respect 
to the Thomas-Fermi gound state. We find that the relaxation times are insensitive to this 
variation of the initial energy. The relaxation process proceeds very similarly in all cases, 
except perhaps for the first few time steps. 

The simplicity of the test case, confining external field plus two-body interaction, 
allowed a well controlled variation of the strength of the residual interaction, in particular, 
in a perturbative regime. Variation of the external field has shown that the relaxation 
times depend predominantly on the residual interaction and very little on the external 
field. Variation of the strength of the residual interaction delivered a linear dependence 
of the relaxation rates (i.e. inverse relaxation times) on the coupling strength, hinting at 
a predominance of one-body dissipation for our test case. This has been confirmed by 
disentangling one- and two-body dissipation from a variation of the number of test particles. 
It is to be noted that previous investigations using a realistic nuclear interaction have shown 
more two- than one-body dissipation [7]. The relative weight of these two mechanisms 
thus depends on the actual Hamiltonian and needs to be checked anew in every case. In 
any case, there remains the strong relaxation towards the classical Boltzmann equilibrium 
whose rate competes with other relaxation processes, as, for example, the drive towards a 
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Fermi equilibrium from the fermionic Uehling-Uhlenbeck collision term. This unwanted 
competition causes serious doubts on the applicabiIity of the Vlasov-Uehling-Uhlenbeck 
equation for long-time simulations of fermion dynamics. What one needs is a classical 
limit of the particle dynamics which preserves the memory on the fermionic nature of the 
particles involved. 
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